COMPACT REAL HYPERSURFACES OF A COMPLEX PROJECTIVE SPACE

MASAFUMI OKUMURA

Introduction

Let M be an n-dimensional real hypersurface of a complex projective space $CP^{(n+1)/2}$ of complex dimension (n+1)/2, and H the Weingarten map of the immersion $i: M \to CP^{(n+1)/2}$. It is known [1] that if a compact minimal hypersurface M of $CP^{(n+1)/2}$ satisfies trace $H^2 \le n-1$, then trace $H^2 = n-1$, and up to isometries of $CP^{(n+1)/2}$, M is a certain distinguished minimal hypersurface $M_{p,q}^c$ for some p and q.

The purpose of the present paper is to generalize the above result in such a way that we have an integral inequality which is still valid even if the immersion i is not necessarily minimal. Two main tools for this purpose are Lemma 1.1, to be stated in § 1, and the following integral formula established by Yano [3], [4]:

$$(0.1) \qquad \int_{M} \left\{ \operatorname{Ric}(X, X) + \frac{1}{2} |L(X)g|^{2} - |\overline{V}X|^{2} - (\operatorname{div}X)^{2} \right\} *1 = 0 ,$$

where X is an arbitrary tangent vector field on M, *1 is the volume element of M, and |Y| denotes the length with respect to the Riemannian metric of a vector field Y on M.

In § 1 we explain the model space $M_{p,q}^c$, and in § 2 we present some formulas to be used in § 3. Finally in § 3 we prove our main result.

1. Submersion, immersion and the model $M_{p,q}^c$

Let S^{n+2} be an odd-dimensional sphere of radius 1 in a Euclidean (n+3)-space E^{n+3} , $CP^{(n+1)/2}$ the complex projective space, and $\tilde{\pi}$ the Riemannian submersion with totally geodesic fibres, which is defined by the Hopf fibration $S^{n+2} \to CP^{(n+1)/2}$. The almost complex structure J of $CP^{(n+1)/2}$ is nothing but the fundamental tensor of the submersion $\tilde{\pi}$, and the Riemannian metric G of $CP^{(n+1)/2}$ is induced naturally from that of S^{n+2} . With respect to (J,G), $CP^{(n+1)/2}$ is a Kaehlerian manifold of constant holomorphic sectional curvature 4. The curvature tensor \bar{R} of $CP^{(n+1)/2}$ is given by

Received October 31, 1975.

(1.1)
$$\bar{R}(\bar{X}, \bar{Y})\bar{Z} = G(\bar{Y}, \bar{Z})\bar{X} - G(\bar{X}, \bar{Z})\bar{Y} + G(J\bar{Y}, \bar{Z})J\bar{X}$$
$$- G(J\bar{X}, \bar{Z})J\bar{Y} - 2G(J\bar{X}, \bar{Y})J\bar{Z} ,$$

where \overline{X} , \overline{Y} and \overline{Z} are tangent vector fields on $CP^{(n+1)/2}$.

For a real hypersurface M of $CP^{(n+1)/2}$ and the circle bundle \overline{M} over M we can construct a Riemannian submersion π compatible with the Hopf fibration $\tilde{\pi}$ in such a way that \overline{M} is a hypersurface of S^{n+2} and that for $\pi: \overline{M} \to M$, the following diagram commutes:

$$\overline{M} \xrightarrow{\widetilde{i}} S^{n+2}$$

$$\downarrow^{\widetilde{n}}$$

$$M \xrightarrow{i} CP^{(n+1)/2}.$$

In this case \tilde{t} is an isometry on the fibres. We take the family of generalized Clifford surfaces $M_{r,s} = S^r \times S^s$, where r+s=n+1. Regarding E^{n+3} as a complex $\frac{1}{2}(n+3)$ -space, we choose the spheres to lie in complex subspaces. Then we get fibrations $S^1 \to M_{2p+1,2q+1} \to M_{p,q}^c$ compatible with the Hopf fibration, where 2(p+q)=n-1. $M_{p,q}^c$ thus obtained are remarkable classes of real hypersurfaces of $CP^{(n+1)/2}$.

Remark. In [1], $M_{r,s}$ always means $S^r \times S^s$ which is immersed in S^{n+2} minimally. But in this paper we do not assume that $M_{r,s}$ is minimal.

A fundamental relation between M and \overline{M} is the following [2].

Lemma. 1.1. In order that the Weingarten map \overline{H} of \overline{M} is covariant constant, it is necessary and sufficient that the Weingarten map H of M commutes with the fundamental tensor F of π .

From this lemma we know that if the Weingarten map H commutes with the fundamental tensor F of π , \overline{M} must be $M_{r,s}^c$ and consequently M must be $M_{r,s}^c$ for some p, q.

2. Local formulas for a real hypersurface

Let X be a vector field over a real hypersurface M of $CP^{(n+1)/2}$, and N the unit normal local field to M. Then the transforms JX and JN of X and N respectively by the almost complex structure J of $CP^{(n+1)/2}$ can be expressed by

$$(2.1) JX = FX + u(X)N, JN = -U,$$

where F is the fundamental tensor of the submersion $\pi : \overline{M} \to M$, [2]. F, u and U thus obtained define, respectively, antisymmetric linear transformation of the tangent bundle T(M), a 1-form and a vector field on M. In terms of the induced Riemannian metric g we have

$$(2.2) g(U,X) = u(X).$$

Iterating J to X and N we can easily see that

$$(2.3) F^2X = -X + g(U, X)U,$$

$$(2.4) FU = 0,$$

$$(2.5) g(U, U) = 1.$$

The second fundamental form h and the corresponding Weingarten map H of T(M) are defined and related to covariant differentiation \overline{V} and \overline{V} in \overline{M} and M respectively by the following formulas:

$$(2.6) \bar{\nabla}_{x}Y = \nabla_{x}Y + h(X,Y) ,$$

and h(X, Y) = g(HX, Y)N = g(X, HY)N.

Since the Riemannian connection of $CP^{(n+1)/2}$ leaves the almost complex structure J invariant, (2.1), (2.6) and (2.7) imply that

$$(\nabla_{Y}F)Z = g(U,Z)HY - g(HY,Z)U,$$

$$(2.9) V_{\nu}U = FHY.$$

Lemma 2.1. In order that the Weingarten map H of M commutes with the fundamental tensor F of π , it is necessary and sufficient that the vector field U is an infinitesimal isometry.

Proof. We compute the Lie derivative L(U)g of the Riemannian metric g with respect to U, and obtain

$$\begin{split} (L(U)g)(X,Y) &= g(\overline{V}_XU,Y) + g(\overline{V}_YU,X) \\ &= g(FHX,Y) + g(FHY,X) = g((FH-HF)X,Y) \;, \end{split}$$

because of the fact that H is symmetric and F is antisymmetric. Thus we have proved Lemma 2.1.

Let R and Ric be respectively the curvature tensor and the Ricci tensor of M. Then from (1.1) we have

(2.10)
$$R(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(FY, Z)FX - g(FX, Z)FY - 2g(FX, Y)FZ + g(HY, Z)HX - g(HX, Z)HY,$$

$$Ric (X, Y) = (n + 2)g(X, Y) - 3g(U, X)g(U, Y) + (trace H)g(HX, Y) - g(H^2X, Y).$$

3. A generalization of Lawson's theorem

Here we prove a theorem which is a generalization of Lawson's theorem

stated in the beginning of the introduction. First we apply (0.1) to the vector field U. Since F is antisymmetric and H is symmetric, (2.9) implies that div U = trace FH = 0 and consequently (0.1) becomes

(3.1)
$$\int_{M} \{ \operatorname{Ric}(U, U) - |\mathcal{V}U|^{2} \} *1 = -\frac{1}{2} \int_{M} |L(U)g|^{2} *1 \le 0,$$

where equality holds if ond only if U is an infinitesimal isometry. On the other hand, (2.3) (2.5) (2.9) and (2.11) imply that

(3.2)
$$\operatorname{Ric}(U, U) = n - 1 + (\operatorname{trace} H)g(HU, U) - g(H^{2}U, U),$$

$$(3.3) \quad |\nabla U|^2 = \operatorname{trace} FH^t(FH) = -\operatorname{trace} F^2H^2 = \operatorname{trace} H^2 - g(H^2U, U) .$$

Substituting (3.2) and (3.3) into (3.1), we have

(3.4)
$$\int_{M} \{n-1 + (\operatorname{trace} H)g(HU, U) - \operatorname{trace} H^{2}\} *1 \le 0,$$

where equality holds if and only if U is an infinitesimal isometry. Thus combining Lemma 1.1 with Lemma 2.1 gives

Theorem. Let M be a compact orientable real hypersurface of $CP^{(n+1)/2}$ over which the following inequality

(3.5)
$$\int_{M} \{n-1 + (\operatorname{trace} H)g(HU, U) - \operatorname{trace} H^{2}\} *1 \ge 0$$

holds. Then, up to isometries of $CP^{(n+1)/2}$, M is $M_{p,q}^c$ for some p and q.

Corollary 1. Let M be a compact orientable real hypersurface of $CP^{(n+1)/2}$. If the Weingarten map H of M satisfies

$$(3.6) trace H2 \le n - 1 + (trace H)g(HU, U),$$

then, up to isometries of $CP^{(n+1)/2}$, M is $M_{p,q}^c$ for some p and q.

Corollary 2, [1]. Let M be a compact orientable minimal hypersurface of $CP^{(n+1)/2}$ over which trace $H^2 \leq n-1$ holds. Then, up to isometries of $CP^{(n+1)/2}$, M is $M_{p,q}^c$ for some p, q.

Bibliography

- [1] H. B. Lawson, Jr., Rigidity treorems in rank-1 symmetric spaces, J. Differential Geometry 4 (1970) 349-357.
- [2] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975) 355-364.
- [3] K. Yano, On harmonic and Killing vector fields, Ann. of Math. 55 (1952) 38-45.
- [4] —, Integral formulas in Riemannian geometry, Dekker, New York, 1970.

SAITAMA UNIVERSITY, JAPAN